↳ Prolog
↳ PrologToPiTRSProof
ack_in(s(M), s(N), A) → U2(M, N, A, ack_in(s(M), N, A1))
ack_in(s(M), 0, A) → U1(M, A, ack_in(M, s(0), A))
ack_in(0, N, s(N)) → ack_out(0, N, s(N))
U1(M, A, ack_out(M, s(0), A)) → ack_out(s(M), 0, A)
U2(M, N, A, ack_out(s(M), N, A1)) → U3(M, N, A, ack_in(M, A1, A))
U3(M, N, A, ack_out(M, A1, A)) → ack_out(s(M), s(N), A)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ack_in(s(M), s(N), A) → U2(M, N, A, ack_in(s(M), N, A1))
ack_in(s(M), 0, A) → U1(M, A, ack_in(M, s(0), A))
ack_in(0, N, s(N)) → ack_out(0, N, s(N))
U1(M, A, ack_out(M, s(0), A)) → ack_out(s(M), 0, A)
U2(M, N, A, ack_out(s(M), N, A1)) → U3(M, N, A, ack_in(M, A1, A))
U3(M, N, A, ack_out(M, A1, A)) → ack_out(s(M), s(N), A)
ACK_IN(s(M), s(N), A) → U21(M, N, A, ack_in(s(M), N, A1))
ACK_IN(s(M), s(N), A) → ACK_IN(s(M), N, A1)
ACK_IN(s(M), 0, A) → U11(M, A, ack_in(M, s(0), A))
ACK_IN(s(M), 0, A) → ACK_IN(M, s(0), A)
U21(M, N, A, ack_out(s(M), N, A1)) → U31(M, N, A, ack_in(M, A1, A))
U21(M, N, A, ack_out(s(M), N, A1)) → ACK_IN(M, A1, A)
ack_in(s(M), s(N), A) → U2(M, N, A, ack_in(s(M), N, A1))
ack_in(s(M), 0, A) → U1(M, A, ack_in(M, s(0), A))
ack_in(0, N, s(N)) → ack_out(0, N, s(N))
U1(M, A, ack_out(M, s(0), A)) → ack_out(s(M), 0, A)
U2(M, N, A, ack_out(s(M), N, A1)) → U3(M, N, A, ack_in(M, A1, A))
U3(M, N, A, ack_out(M, A1, A)) → ack_out(s(M), s(N), A)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
ACK_IN(s(M), s(N), A) → U21(M, N, A, ack_in(s(M), N, A1))
ACK_IN(s(M), s(N), A) → ACK_IN(s(M), N, A1)
ACK_IN(s(M), 0, A) → U11(M, A, ack_in(M, s(0), A))
ACK_IN(s(M), 0, A) → ACK_IN(M, s(0), A)
U21(M, N, A, ack_out(s(M), N, A1)) → U31(M, N, A, ack_in(M, A1, A))
U21(M, N, A, ack_out(s(M), N, A1)) → ACK_IN(M, A1, A)
ack_in(s(M), s(N), A) → U2(M, N, A, ack_in(s(M), N, A1))
ack_in(s(M), 0, A) → U1(M, A, ack_in(M, s(0), A))
ack_in(0, N, s(N)) → ack_out(0, N, s(N))
U1(M, A, ack_out(M, s(0), A)) → ack_out(s(M), 0, A)
U2(M, N, A, ack_out(s(M), N, A1)) → U3(M, N, A, ack_in(M, A1, A))
U3(M, N, A, ack_out(M, A1, A)) → ack_out(s(M), s(N), A)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
ACK_IN(s(M), s(N), A) → U21(M, N, A, ack_in(s(M), N, A1))
ACK_IN(s(M), 0, A) → ACK_IN(M, s(0), A)
ACK_IN(s(M), s(N), A) → ACK_IN(s(M), N, A1)
U21(M, N, A, ack_out(s(M), N, A1)) → ACK_IN(M, A1, A)
ack_in(s(M), s(N), A) → U2(M, N, A, ack_in(s(M), N, A1))
ack_in(s(M), 0, A) → U1(M, A, ack_in(M, s(0), A))
ack_in(0, N, s(N)) → ack_out(0, N, s(N))
U1(M, A, ack_out(M, s(0), A)) → ack_out(s(M), 0, A)
U2(M, N, A, ack_out(s(M), N, A1)) → U3(M, N, A, ack_in(M, A1, A))
U3(M, N, A, ack_out(M, A1, A)) → ack_out(s(M), s(N), A)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
U21(M, ack_out(A1)) → ACK_IN(M, A1)
ACK_IN(s(M), s(N)) → ACK_IN(s(M), N)
ACK_IN(s(M), 0) → ACK_IN(M, s(0))
ACK_IN(s(M), s(N)) → U21(M, ack_in(s(M), N))
ack_in(s(M), s(N)) → U2(M, ack_in(s(M), N))
ack_in(s(M), 0) → U1(ack_in(M, s(0)))
ack_in(0, N) → ack_out(s(N))
U1(ack_out(A)) → ack_out(A)
U2(M, ack_out(A1)) → U3(ack_in(M, A1))
U3(ack_out(A)) → ack_out(A)
ack_in(x0, x1)
U1(x0)
U2(x0, x1)
U3(x0)
From the DPs we obtained the following set of size-change graphs: